AlphaSTAR Products Overview

Our Products

MCQ

Material Characterization & Qualification

- Facilitates Material Qualification, Modeling and Design Analysis of Advanced Materials
- Supports Full Breadth of 2D/3D Composite Architecture
- Considers Defects: Voids, Fiber Waviness, Manufacturing Anomalies, Environment (Moisture & Temperature)

GENOA

Multi-Scale Progressive Failure Analysis to Assess Durability and Damage Tolerance

- Augments Commercial Finite Element Solvers (e.g. Abaqus, Ansys, Lsdyna)
- Identifies Damage Initiation and Fracture Evolution
- Determines When, Where and Why Failure Occurs

GENOA 3 DP SIMULATION

AM Material and Process Parameter Simulation for Optimized Build

- Automated FE Mesh & Model Generator
- Prediction of Delamination and Other Manufacturing Anomalies
- Prediction of Mechanical Properties at Different Temperatures
- Assess Both Material and Process Parameter Sensitivities

What Sets MCQ Apart

- ✓ Utilizes De-Homogenized Approach
- ✓ Independent of FEM (Unit Cell)
- ✓ Rapid Assessment of Material Properties
- ✓ Reduces Testing Resulting in Cost Savings
- ✓ Identifies Strength Allowables for Reliability
- ✓ Identifies Damage Initiation and Propagation
- ✓ Identifies Damage/Failure Modes
- ✓ Maintains a Validated Material Library
- ✓ Consider Defects, Voids, Fiber waviness, Agglomeration, Manufacturing Anomalies, and Environment (e.g. Moisture & Temperature)

MCQ Utilizes De-Homogenized Approach

What Sets GENOA Apart

- ➤ Runs Multi-Scale Progressive Failure Analysis Damage & Fracture Evolution (Durability & Damage Tolerance Code)
- ➤ Identifies Percentage Contribution of Failure Mechanism (Damage Index) to Show Where, When and Why Failure Occurs
- ➤ Predicts Behavior of Advanced Composite Structures Subject to Static, Dynamic, Fatigue and Environmental Loads while Considering Defects and Scatter

Multi-Scale Progressive Failure Analysis

MS-PFA takes full-scale FEM and breaks material properties down to microscopic level. Material properties are updated, reflecting any changes resulting from damage or crack

Work-Flow Solution from Test to Prediction

MCQ: Material Characterization & Qualification

- ➤ Suite of material modeling tools for:
 - ❖ Polymer Matrix Composite Material
 - ✓ MCQ-Composites (Continuous Fiber)
 - ✓ MCQ-Chopped (Chopped Fiber)
 - ✓ MCQ-Nano (Nano Particles)
 - Ceramic Matrix Composite Material
 - ✓ MCQ-Ceramic
 - Metals
 - ✓ MCQ-Metals
- ➤ Allows Engineers to Characterize and Optimize Material Layouts while Considering the Effect of Defects
- ➤ Delivers Rapid Assessment of Material Properties Needed for FEA

- **52** Test Validation Examples
- 6 Step-by-Step Tutorials
 Total of 37 Examples
- 37 Materials in Library

MCQ-Composites Analysis Modules

GENOA Addresses Multiple Problems

- 44 Step-by-Step Tutorials
- 31 Test Validation Examples
- 37 Code Verifications Examples
- 69 ASTM Models
 Total of 181 Examples

37 Materials in Library

GENOA Analysis Modules

GENOA: Two Ways to Activate

GENOA May be Activated by Direct Integration or Through User Material (UMAT) Subroutine

Currently Available for ABAQUS, ANSYS, LS DYNA

GENOA GUI tracks damage and fracture (identical for both approaches)

GENOA + ALL FEA

Applicable to Most FE Solvers: ABAQUS, LSDYNA, ANSYS, NASTRAN and MHOST

> GENOA GUI tracks damage and fracture (identical for both approaches)

GENOA 3DP: Additive Manufacturing Simulation

Part Bad

Build

st

AM Process Simulation: Coupled Thermal/Structural

Stress Buildup Leads to Bracket and Support Warpage

Ring Bracket Built on UDRI's ATLAS using Inconel 718 powder

Warping/redidual stresses predicted in simulation

Warping eliminated through simulation DOE: improved support design and optimized build parameters to reduce residual stresses

Good Build 3rd

Optimized build changes:

- 1. Mark speed increased
- 2. Hatch spacing increased
- 3. Hatch shifted layer to layer (avoids overlap)
- 4. Support thickness increased

Lower residual stresses

Smooth, warp free part

GENOA 3DP: Software Features

Technology/Features	GENOA3D
Process	
FE Mesh Generator	✓
model-based layer, scan pattern, and mesh generator	
a) Local (Delaney Grain Model); b) Mapping to Global	✓
Mesh using Surrogate Approach	
Adaptive Meshing Strategies	✓
Dynamic Moving Grid Srategy	✓
Predict AM-Fabricated Material Stress-Strain	✓
ABAQUS FEM	✓
Coupled Thermal-Structural Analysis	✓
Integration with Commercial Topology Optimization	ļ
Allowable Generation (Probabilistic Analysis)	✓
Potential to Simulate Big Parts	✓
Metal Powder	
Material Properties Database	✓
Pre-Process Operating Parameters as Inputs	*
(Excluding Parameters Embedded in G-Code)	
Phase Change (α and α+β)	*
Sub-Grain Size Meshing Technique	✓
Intergranular/Transgranular Void Nucleation/Growth	✓
Surface Roughness Prediction	√
Environmental Effect (e.g. Oxidation)	✓
Material Fracture Toughness Prediction	✓
Fatigue Crack Growth Prediction	✓
Fatigue Loading Prediction (S-N)	✓
Diffusional Creep Prediction (a-N)	✓

Thermoplastic	✓
Material Properties Database (strength, stiffness)	✓
Test Validate Thermal Analysis	✓
Simulated Big Part (Strati Car): Residual stress, deflection, delamination, thershold crack, Service load performance	✓
Thermoset	✓
Material Properties Database (Graphene)	✓
Multi Coole Material Medeling (None Micro Marco)	✓
Multi-Scale Material Modeling (Nano-Micro-Macro)	

Material Test Validated Database

Composite

AS4-8552, AS4-ABS13, PP-LGF20, PBT-GF30, PA6, GPN-Epoxy

Powder

Ti-6Al-4V, Inconel 625, Steel (S420M, S690QL)

GENOA has several adaptive meshing technique but it has not been used for AM process simulation.

- [1] Under development
- ✓ Available
- **✗** Not Available
- △ Available for other application

GENOA 3DP: Key Benefits

- Simulation of the AM Build
- Prediction of Mechanical Properties at Different Temperatures
- Prediction of Delamination and Other Manufacturing Anomalies
- Assess Both Material and Process Parameter Sensitivities
- Prediction of the Residual Strength of the Finished As-Built 3Dprinted Part Subject to Service Loading.
- Validated Database for Composites Thermoplastics, Thermoset and Metal Powder

Summary

❖MCQ:

- ✓ Delivers Rapid Assessment of Material Properties for FEA
- **✓ Supports and Optimizes Composite Material Layups**

❖GENOA:

- ✓ Multi-Scale Progressive Failure Analysis: Damage- Fracture Evolution (Durability and Damage Tolerance)
- **✓** Augments Commercial FEA Solvers

❖GENOA 3DP:

- ✓ Predicts Quality of AM Manufactured Part Considering Defects and Scatter
- ✓ Enhances Build Quality, Reduces Scrap Rate and Trial & Error